Analisis Tegangan Bilah Turbin Angin Komposit Berpenguat Spar Ganda

Ikramullah Ikramullah, Hendrix Noviyanto Firmansyah, Djarot Wahju Santoso


The design of wind turbine blades requires structural design and material selection that can withstand aerodynamic loads. The required structural criteria for wind blades are strong and lightweight. Modeling and analysis of stress values were carried out using MSC Patran/Nastran software. The selected material is an E-Glass fiber composite with epoxy resin matrix and has 8 layers with different fiber directions in each layer with fiber direction arrangement [0°/±45°/90°]. The turbine blade model without a spar is compared with the double spar turbine blade. The results found that the stress of the double spar blade had a lower stress value with a maximum tensile stress of 8.83 MPa, while on the blade without spar the maximum tensile stress was 10.6 MPa, while the maximum compressive stress on the double spar blade was 8.68 MPa, the maximum compressive stress on the blade without spar was 11 MPa.


stress analysis, double spar, composite, wind turbine, MSC patran/nastran

Full Text:



A. S. Brandão, A. Gonçalves, and J. M. R. C. A. Santos, “Circular bioeconomy strategies: From scientific research to commercially viable products,” J Clean Prod, vol. 295, p. 126407, 2021.

J. Charles Rajesh Kumar and M. A. Majid, “Renewable energy for sustainable development in India: Current status, future prospects, challenges, employment, and investment opportunities,” Energy Sustain Soc, vol. 10, no. 1, pp. 1–36, 2020.

A. Qazi, H. Fayaz, N. A. Rahim, G. Hardeker, D. lghazzawi, K. Shaban, K. Haruna, “Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions,” IEEE Access, vol. 7, pp. 63837–63851, 2019.

S. N. Prajapati and M. Kumar, “A Finite Element Structural Analysis Of Wind Turbine Blade,” Int. J. for Res. Trends and Innov., 2017.

A. A. Nada and A. S. Al-Shahrani, “Shape Optimization of Low Speed Wind Turbine Blades using Flexible Multibody Approach,” Energy Procedia, vol. 134, pp. 577–587, Oct. 2017.

J. Chen, J. Wang, and A. Ni, “A review on rain erosion protection of wind turbine blades,” J Coat Technol Res, vol. 16, no. 1, pp. 15–24, 2019.

J. Joustra, B. Flipsen, and R. Balkenende, “Structural reuse of high end composite products: A design case study on wind turbine blades,” Resour Conserv Recycl, vol. 167, p. 105393, 2021.

K. Cox and A. Echtermeyer, “Structural Design and Analysis of a 10MW Wind Turbine Blade,” Energy Procedia, vol. 24, pp. 194–201, 2012.

N. Hoksbergen, R. Akkerman, and I. Baran, “The Springer Model for Lifetime Prediction of Wind Turbine Blade Leading Edge Protection Systems: A Review and Sensitivity Study,” Materials 2022, Vol. 15, Page 1170, vol. 15, no. 3, p. 1170, 2022.

M. M. Schwartz, “Composite Materials: Processing, fabrication, and applications,” 1st ed., California, Pearson Technology Group, 1997.

P. Kaewniam, M. Cao, N. F. Alkayem, D. Li, and E. Manoach, “Recent advances in damage detection of wind turbine blades: A state-of-the-art review,” Renewable and Sustainable Energy Reviews, vol. 167, p. 112723, 2022.

M. Luthfi, “Analisis Tegangan Pada Bilah Rotor Turbin Angin Akibat Beban Aerodinamika,” Institut Teknologi Dirgantara Adisutjipto, Yogyakarta, 2013.

Mushlich, “Analisis Tegangan Pada Bilah Turbin Angin Komposit Sandwich Core Foam,” Institut Teknologi Dirgantara Adisutjipto, Yogyakarta, 2014.

J. L. Tangler, “The Evolution of Rotor and Blade Design,” U.S. Department of Energy, Tennessee. 2000.

B. Sebastian, “Pemodelan Dan Analisis Sambungan Mekanik Pada Struktur Komposit Bilah Turbin Angin Menggunakan Metode Elemen Hingga,” Tugas Akhir, Institut Teknologi Bandung, Bandung, 2011.



  • There are currently no refbacks.

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.



RJI Main logo

Bekerjasama dengan Native Proofreading