Optimasi Volume Injeksi Pada Waterflooding Menggunakan Metode Artificial Neural Network
Abstract
Keywords
Full Text:
PDFReferences
Dan A. S. D. Kristanato, “Evaluasi Penggunaan Injeksi Air Untuk Pressure Maintanance Pada Reservoir Lapangan Minyak,” Univ. Pembang. Nas. “Veteran” Yogyakarta, 2015.
N. Dicgorry And S. H. , M. Taufik Fathaddin, “Analisa Efektifitas Pola Injeksi Air Antara Normal Dan Inverted Five Spot Simulasi Reservoir Lapangan Dnt,” Semin. Nas. Cendekiawan, No. Issn: 2460-8696, Pp. 324–334, 2015.
T. Ahmed, Reservoir Engineering Handbook, Fourth Edi. Usa: Elsevier Inc, 2010.
A. Iqbal, I. Sugiatmo, And P. R. Pratiwi, “Evaluasi Kinerja Reservoir Dengan Injeksi Air Pada Pattern 8 Lapangan ‘ Tql ,’” Semin. Nas. Cendekiawan Ke 3 Tahun 2017, Pp. 13–18, 2017.
P. I. Imuokhuede, I. Ohenhen, And O. A. Olafuyi, “Screening Criteria For Waterflood Projects In Matured Reservoirs : Case Study Of A Niger Delta Reservoir,” Spe Niger. Annu. Int. Conf. Exhib., 2020.
J. Bruyelle And D. Guérillot, “Optimization Of Waterflooding Strategy Using Artificial Neural Networks,” Soc. Pet. Eng. - Spe Reserv. Characterisation Simul. Conf. Exhib. 2019, Rcsc 2019, No. 1997, Pp. 17–19, 2019, Doi: 10.2118/196643-Ms.
F. Ahmadloo, K. Asghari, And G. Renouf, “Performance Prediction Of Waterflooding In Western Canadian Heavy Oil Reservoirs Using Artificial Neural Network,” Energy And Fuels, Vol. 24, No. 4, Pp. 2520–2526, 2010, Doi: 10.1021/Ef9013218.
S. Kalam, S. A. Abu-Khamsin, H. Y. Al-Yousef, And R. Gajbhiye, “A Novel Empirical Correlation For Waterflooding Performance Prediction In Stratified Reservoirs Using Artificial Intelligence,” Neural Comput. Appl., Vol. 33, No. 7, Pp. 2497–2514, 2021, Doi: 10.1007/S00521-020-05158-1.
M. I. Osatemple, A. T. Adeniyi, And A. Giwa, “Assessment And Optimization Of Waterflooding Performance In A Hydrocarbon Reservoir,” Soc. Pet. Eng. - Spe Niger. Annu. Int. Conf. Exhib. 2021, Naic 2021, No. September, 2021, Doi: 10.2118/207114-Ms.
W. Yue And J. Y. Wang, “Feasibility Of Waterflooding For A Carbonate Oil Field Through Whole-Field Simulation Studies,” J. Energy Resour. Technol. Trans. Asme, Vol. 137, No. 6, Pp. 1–8, 2015, Doi: 10.1115/1.4030401.
B. R. Crawford, P. F. Sanz, B. Alramahi, And N. L. Dedontney, “Modeling And Prediction Of Formation Compressibility And Compactive Pore Collapse In Siliciclastic Reservoir Rocks,” 45th Us Rock Mech. / Geomech. Symp., No. June 2011, 2011.
Q. Sun And T. Ertekin, “Development And Application Of An Artificial-Neural-Network Based Expert System For Screening And Optimization Of Polymer Flooding Projects,” Soc. Pet. Eng. - Spe Kingdom Saudi Arab. Annu. Tech. Symp. Exhib. 2018, Sats 2018, 2018, Doi: 10.2118/192236-Ms.
A. Hammoudi, K. Moussaceb, C. Belebchouche, And F. Dahmoune, “Comparison Of Artificial Neural Network (Ann) And Response Surface Methodology (Rsm) Prediction In Compressive Strength Of Recycled Concrete Aggregates,” Constr. Build. Mater., Vol. 209, Pp. 425–436, 2019, Doi: 10.1016/J.Conbuildmat.2019.03.119.
Z. Qiao, Z. Wang, C. Zhang, S. Yuan, Y. Zhu, And J. Wang, “Estimation Of Breakthrough Time For Water Coning In Fractured Systems: Experimental Study And Connectionist Modeling,” Aiche J., Vol. 59, No. 4, Pp. 215–228, 2012, Doi: 10.1002/Aic.
E. Vivas, H. Allende-Cid, And R. Salas, “A Systematic Review Of Statistical And Machine Learning Methods For Electrical Power Forecasting With Reported Mape Score,” Entropy, Vol. 22, No. 12, Pp. 1–24, 2020, Doi: 10.3390/E22121412.
K. Margi S And S. Pendawa W, “Analisa Dan Penerapan Metode Single Exponential Smoothing Untuk Prediksi Penjualan Pada Periode Tertentu,” Pros. Snatif, No. 1998, Pp. 259–266, 2015.
DOI: https://doi.org/10.32672/jse.v8i2.5987
Refbacks
- There are currently no refbacks.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
Bekerjasama dengan Native Proofreading