A Review on the Impact of Silver Nanoparticles on Soil Microorganisms and Bioremediation as Heavy Metal Removal Technology

Hartati Oktarina, Teuku Mukhriza


The increasing and varied use of silver nanoparticles (AgNPs) as antimicrobial on consumer products increases the risk of the nanomaterial release into the environment and potentially harm beneficial microorganisms in soil. Any change in soil microbial composition will lead to soil quality degradation that eventually reduce crop productivity. The negative effect of AgNPs on soil microorganism has been reported by researchers. There are technologies employed to remove heavy metals from soil such as chemical, physical, and biological technique. However, chemical and physical techniques have some disadvantages e.g high cost and partial removal. Therefore, biological technique including the use of microorganisms (bioremediation) become more favourable. The technique is considered as cost effectiveness and environmentally sustainable method. The present paper summarizes the impact of AgNPs on soil microorganisms and the use of microorganisms (bacteria, fungi, algae, and yeast) to eliminate heavy metals pollution in soil.


AgNPs, algae, bacteria, fungi, yeast

Full Text:



Zhu K., Shang YY., Sun PZ., Li Z., Li XM., Wei JQ., Wang KL., Wu DH., Cao AY., Zhu HW. 2013. Oil spill clean-up from sea water by carbon nanotube sponges. Front.Mater.Sci: 7(2), 170-176. doi.org/10.1007/s11706-013-0200-1

Murphy M., Ting K., Zhang X., Soo C., Zheng Z. 2015. Current development of silver nanoparticles preparation, investigation, and application in the field of medicine. Journal of nanomaterials. 12 p. https://doi.org.10.1155/2015/696918

Singh T., Shukla S., Kumar P., Wahla V., Bajpai VK., Rather IA. 2017. Application nanotechnology in food science: perception and overview. Frontiers in Microbiology, 8, 1501

The Project on Emerging Nanotechnologies. 2013. Silver nanoparticles products. http://www.nanotechproject.org/cpi/browse/nanomaterials/silver-nanoparticle/

Limpiteeprakan P., Babel S., Lohwacharin J., Takizawa S. 2016. Release of silver nanoparticles from fabrics during the course of sequential washing. Environ Sci Pollut Res Int. 23(22):22810-22818. doi: 10.1007/s11356-016-7486-3

Schlich K., Klawonn T., Terytze K., Hund-Rinke K. 2013. Hazard assessment of a silver nanoparticle in soil applied via sewage sludge. Environmental Sciences Europe 25:17

Kim SW., Jung JH., Lamsal K., Kim YS., Min JS., Lee YS. 2012. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology. 40(1): 53–58

Siripattanakul-Ratpukdi S., Fürhacker M. 2014. Review: Issues of silver nanoparticles in engineered environmental treatment systems. Water Air Soil Pollut 225: 1939

Hänsch M., Emmerling C. 2010. Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J. Plant Nutr. Soil Sci., 173: 554–558

Kumar A., Bisht BS., Joshi VD., Dhewa T. 2011. Review on bioremediation of polluted environment: a management tool. International Journal of Environmental Sciences; 1 (6) 1079–1093.

Calder AJ., Dimkpa CO., McLean JE., Britt DW., Johnson W., Anderson AJ. 2012. Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6. Sci Total Environ 429:215222

Sweet MJ., Singleton I. 2015. Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots. J Nanopart Res. 17: 448

Anjum, N.A., Gill, S.S., Duarte, A,C., Pereira, E., Ahmad, I. 2013. Silver nanoparticles in soil-plant systems J. Nanopart Res., 15:1896

Grün AL., Manz W., Kohl Y.L., Meier F., Straskraba S., Jost C., Drexel R., Emmerling C. 2019. Impact of silver nanoparticles (AgNP) on soil microbial community depending on functionalization, concentration, exposure time, and soil texture. Environ Sci Eur 31, 15. https://doi.org/10.1186/s12302-019-0196-y

Oktarina H., Singleton I. 2020a. Can nano-silver products endanger beneficial soil fungi? IOP Conf. Series: Earth and Environmental Science 425, 012070 doi:10.1088/1755-1315/425/1/012070

Oktarina H., Singleton I. 2020b. Soil fungal community responses to the silver nanoparticles contamination as assessed by illumina next generation sequencing (NGS). Jurnal Rekayasa Kimia dan Lingkungan (Journal of Chemical Engineering and Environment) 15(2), 99-103

Cornelis G., Thomas CD., McLaughlin MJ., Kirby JK., Beak DG., Chittleborough D. 2012. Retention and dissolution of engineered silver nanoparticles in natural soils. Soil Sci. Soc. Am. J. 76:891–902

Coutris C., Hertel-Aas T., Lapied E., Joner EJ., Oughton DH .2012. Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida. Nanotoxicology 6: 186-195

Levard C., Hotze EM., Lowry GV., Brown GE. 2012. Environmental transformations of silver nanoparticles: Impact on Stability and Toxicity. Environ. Sci. Technol 46: 6900−6914

Tourinho PS., Van Gestel CA., Lofts S., Svendsen C., Soares AM., Loureiro S. 2012. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ. Toxicol. Chem. 31: 1679-1692

Benoit R., Wilkinson KJ., Sauvé S. 2013. Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles. Chem Cent J 7:75

Sagee O., Dror I., Berkowitz B. 2012. Transport of silver nanoparticles (AgNPs) in soil. Chemosphere. 88(5):670-675

Lowry GV., Espinasse BP., Badireddy AR., Richardson CJ., Reinsch BC., Bryant LD., Bone AJ., Deonarine A., Chae S., Therezien M., Colman BP., Hsu-Kim H., Bernhardt ES., Matson CW., Wiesner MR. 2012. Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol. 3;46(13):7027-36

Mirzajani F., Ghassempour A., Aliahmadi A., Esmaeili MA. 2011. Antibacterial effect of silver nanoparticles on Traphylococcus aureus. Research in Microbiology, 162(5): 542-549

El Badawy AM., Silva RG., Morris B., Scheckel KG., Suidan MT., Tolaymat TM. 2011. Surface Charge-Dependent Toxicity of Silver Nanoparticles. Environ. Sci. Technol. 45, 283–287

Sharma S., Tiwari S., Hasan A., Saxena V., Pandey LM.2018. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech 8, 216. https://doi.org/10.1007/s13205-018-1237-8

Vishwakarma GS., Bhattacharjee G., Gohil N., Singh V. 2020. Current status, challenges and future of bioremediation. Bioremediation of Pollutants, 403–415. doi:10.1016/b978-0-12-819025-8.00020-x

Toor MD., Adnan M. 2020. Role of Soil Microbes in Agriculture: A Review. Open access Journal of Biogeneric and Research. doi:10.46718/JBGSR.2020.04.000091

Kumar N., Palmer GR., Shah V., Walker VK. 2014. Thee effect of silver nanoparticles on seasonal change in Arctic Tundra bacterial and fungal assemblages. PLoS One 9(6): e99953

Yang Y., Quensen J., Mathieu J., Wang Q., Wang J., Lia M., Tiedje JM., Alvarez PJJ. 2014. Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge. Water research 48: 317-325

Das P., Xenopoulos MA., Williams CJ., Hoque MdE., Metcalfe CD .2012. Effects of silver nanoparticles on bacterial activity in natural waters. Enviromental Toxicology and Chemistry 31(1): 122-130

Derbalah AS., Elkot GA., Hamza AM. 2012. Laboratory evaluation of botanical extracts, microbial culture filtrates and silver nanoparticles against Botrytis cinerea. Annals of Microbiology 62 (3):1331-133

Xiang S., Ma X., Shi H., Ma T., Tian C., Chen Y., Chen H., Chen X., Luo K., Cai L., Wang D., Xue Y., Huang J., Sun X. 2019. A green synthesis of alginate-coated silver nano-particle shows high antifungal activity by enhancing its cell membrane penetrating ability. ACS Applied Bio Materials, (), acsabm.9b00590-, doi:10.1021/acsabm.9b00590

Yu Z., Wang W., Dhital R., Kong F., Lin M., Mustapha A. 2019. Antimicrobial effect and toxicity of cellulose nanofibril/silver nanoparticles nanocomposites prepared by an ultraviolet irradiation method. Calloids and Surface B: Biointerfaces, 180: 212-220. https://doi.org/10.1016/j.colsurfb.2019.04.054

Liao S., Zhang Y., Pan X., Zhu F., Jian C., Liu Q., Cheng Z., Dai G., Wu G., Wang L., Chen L. 2019. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aureginosa. International Journal of Nanomedicine: 14, 1469–1487. doi:10.2147/IJN.S191340

Oktarina H., Woodhall J., Singleton I. 2021. The potential of silver nanoparticles to control Rhizoctonia solani (AG3-PT) growth in vitro. Jurnal Natural: 21 (1) doi 10.24815/jn.v2lil.17555

Patil MP., Kim G. 2016. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol. doi 10.1007/s00253-016-8012-8

Abbas BA., Badr, SQ. 2015. Bioremediation of some types of heavy metals by Candida spp. IJETR 3, 2454-4698.

Coelho LM., Rezende HC., Coelho LM., deSousa PA., Melo DF., Coelho NM., 2015. Bioremediation of polluted waters using microorganisms. In: Shiomi, N. (Ed.), Advances in Bioremediation of Wastewater and Polluted Soil. InTech, Shanghai, China.

Pal, AK., Singh J., Soni R., Tripathi P., Kamle M., Tripathi V., Kumar, P. 2020. The role of microorganism in bioremediation for sustainable environment management. Bioremediation of Pollutants, 227–249. doi:10.1016/b978-0-12-819025-8.00010-7

Kim K., Yang E., Vu GP., Gong H., Su J., Liu F., Lu S. 2010. Mass spectrometry-based quantitative proteomic analysis of Salmonella enterica serovar Enteritidis protein expression upon exposure to hydrogen peroxide. BMC Microbiol 8:10–166

Abdelatey LM., Khalil WKB., Ali TA., Mahrous KF. 2011. Heavy metal resistance and gene expression analysis of metal resistance genes in gram-positive and gram-negative bacteria present in egyptian soils. J Appl Sci Environ Sanit 6(2):201–211

Vargas-García MC., López MJ., Suárez-Estrella F., Moreno J. 2012. Compost as a source of microbial isolates for the bioremediation of heavy metals: in vitro selection. Sci Total Environ 431:62–67

de Alencar FLS., Navoni JA., do Amaral VZ. 2017. The use of bacterial bioremediation of metals in aquatic environments in the twenty-first century: a systematic review. Environmental Scince and Pollution Research. (),- doi:10.1007/s11356-017-9129-8

Deng XH., Chai L.Y., Yang ZH., Tang CJ., Tong HX., Yuan PF., 2012. Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1. J. Hazard. Mater. 233, 25e32.

Babu AG., Shim J., Bang K., Shea PJ., Oh B. 2014. Trichoderma virens PDR-28: A heavy metal-tolerant and plant growth-promoting fungus for remedation and bioenergy crop production on mine tailing soil. Journal of Environmental Management, 132, 129-134

Tripathi P., Singh PC., Mishra A., Chauhan PS., Dwivedi S., Bais RT., Tripathi RD. 2013. Trichoderma: a potential bioremediator for environmental clean up. Clean Techn Environ Policy 15:541–550

Sreekumar N., Udayan A., Srinivasan S. 2020. 11 - Algae bioremediation of heavy metals. Shah MP. (Ed.) Removal of toxic pollutant through microbiological and tertiary treatment. Elsevier. P 279-307. https://doi.org/10.1016/B978-0-12-821014-7.00011-3

Bwapwa JK., Jaiyeola AT., Chetty R. 2017. Bioremediation of acid mine drainage using algae strains: A review. South African Journal of Chemical Engineering, 24: 62-70. https://doi.org/10.1016/j.sajce.2017.06.005

Leonardo T., Farhi E., Pouget S., Motellier S., Boisson A., Banerjee D., Rébeillé F., den Auwer C., Rivasseau C. 2016. Silver accumulation in the green microalga Coccomyxa actinabiotis: Toxicity, in situ speciation, and localization investigated using synchrotron XAS, XRD, and TEM. Environ. Sci. Technol. 2016, 50, 1, 359–367. https://doi.org/10.1021/acs.est.5b03306

García-Béjar, B., Arévalo-Villena, M., Guisantes-Batan, E.,Rodríguez-Flores J., Briones, A. 2020. Study of the bioremediatory capacity of wild yeasts. Sci Rep 10, 11265. https://doi.org/10.1038/s41598-020-68154-4

Dourado M., Martins P., Quecine M., Piotto F., Souza L., Franco M., Tezotto T., Azevedo R. 2013. Burkholderia sp. SCMS54 reduces cadmium toxicity and promotes growth in tomato. Ann Appl Biol163(3):494–507

Ibuot A., Dean AP., McIntosh OA., Pittman JK. 2017. Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains. Algal Res 24:89–96

Thatoi H., Das S., Mishra J., Rath BP., Das N. 2014. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. Journal of Environmental Management; 146 383–399

Balamurugan D., Udayasooriyan C., Kamaladevi B., 2014. Chromium (VI) reduction by Pseudomonas putida and Bacillus subtilis isolated from contaminated soils. Int. J. Environ. Sci. 5, 522.

Bhakta JN., Munekage Y., Ohnishi K., Jana BB., Balcazar JL. 2014. Isolation and characterization of cadmium and arsenic-absorbing bacteria for bioremediation. Water, air, and soil pollution, 225, 2150-2159

Achal V., Pan X., Zhang D., Fu Q. 2012. Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation. J. Microbiol. Biotechnol. 22, 244-247

Nagy B., Mânzatu C., Maicaneanu A., Indolean C., Lucian BT., Majdik C. 2014. Linear and nonlinear regression analysis for heavy metals removal using Agaricus bisporus macrofungus. Arabian Journal of Chemistry 014; http://dx.doi.org/10.1016/j.arabjc.

Ramasamy RK., Congeevaram S., Thamaraiselvi K. 2011. Evaluation of isolated fungal strain from e-waste recycling facility for effective sorption of toxic heavy metal Pb (II) ions and fungal protein molecular characterization-a Mycoremediation approach. Asian Journal of Experimental Biological Sciences; 2(2) 342–347

Fulekar MH., Sharma J., Tendulkar A. 2012. Bioremediation of heavy metals using biostimulation in laboratory bioreactor. Environmental Monitoring and Assessment; 184(12): 7299–7307.

Iskandar NL., Zainudin NA., Tan SG. 2011. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J Environ Sci (China) 23: 824-830

Mohsenzadeh F., Shahrokhi F. 2014. Biological removing of Cadmium from contaminated media by fungal biomass of Trichoderma species. J Environ Health Sci Eng. 12: 102

Lima AF., Moura GF., Lima MAB., Souza PM., Silva CAA., Takaki GMC., Nascimento AE. 2011. Role of the Morphology and Polyphosphate in Trichoderma harzianum Related to Cadmium Removal. Molecules 16: 2486-2500

Saunders RJ., Paul NA., Hu Y., de Nys R. 2012. Sustainable sources of biomass for bioremediation of heavy metals in wastewater derived from coal-fired power generation. PLoS One. ; 7(5): e36470

Lee YC., Chang SP. 2011. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology; 102 (9) 5297–5304

Mane PC., Bhosle AB. 2012. Bioremoval of some metals by living Algae spirogyra sp. and Spirullina sp. from aqueous solution. International Journal of Environmental Research; 6(2) 571–576

Massoud R., Hadiani MR., Hamzehlou P., Khosravi-Darani K. 2019. Bioremediation of heavy metals in food industry: Application of Saccaromyces cerevisiae. Electronic Journal of Biology: 37: 56-60. https://doi.org/10.1016/j.ejbt.2018.11.003

DOI: https://doi.org/10.32672/jse.v6i2.2892


  • There are currently no refbacks.

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.



RJI Main logo

Bekerjasama dengan Native Proofreading