The Application of Dielectric Barrier Discharge Plasma on Fischer-Tropsch Synthesis: A Review

Teuku Mukhriza, Hartati Oktarina


Fischer-Tropsch (FT) Synthesis has been widely known for centuries as the process of converting syngas to liquid fuels. Several reactors including Slurry bubble column, fluidized-bed, and fixed bed reactors have been used for FTS on an industrial scale. Although science has seen remarkable development in technology for FT synthesis, the industry still faces challenges in optimizations of process parameters and achieved desired selectivity.  Extensive research has been continuously conducted to seek the best FT reactor offering heat uniformity and efficient heat transfer across the reactor to increase the catalytic activity and its lifetime. Dielectric Barrier Discharge (DBD) plasma has become one of the options to deal with these issues. This reactor work under low temperature delivers a synergistic effect between plasma and catalyst to break H2 and CO bond. DBD plasma is also suitable for feedstock with high H2/CO molar ratios. It is also found that FT catalyst such as cobalt catalyst used in DBD plasma was well dispersed on the support which in turn favour the selectivity toward liquid hydrocarbon.


syngas, GTL, plasma reactor, cobalt catalyst, non-thermal plasma

Full Text:



A. P. Steynberg, “Introduction to Fischer-Tropsch technology,†Studies in Surface Science and Catalysis, vol. 152. Elsevier Inc., pp. 1–63, Jan. 01, 2004, doi: 10.1016/s0167-2991(04)80458-0.

G. Evans and C. Smith, “Biomass to liquids technology,†in Comprehensive Renewable Energy, vol. 5, Elsevier Ltd, 2012, pp. 155–204.

M. Martinelli, M. K. Gnanamani, S. LeViness, G. Jacobs, and W. D. Shafer, “An overview of Fischer-Tropsch Synthesis: XtL processes, catalysts and reactors,†Appl. Catal. A Gen., vol. 608, p. 117740, 2020, doi:

C. Higman and M. van der Burgt, “Chapter 7 - Applications,†C. Higman and M. B. T.-G. (Second E. van der Burgt, Eds. Burlington: Gulf Professional Publishing, 2008, pp. 257–321.

A. Bogaerts, E. Neyts, R. Gijbels, and J. Van der Mullen, “Gas discharge plasmas and their applications,†Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 57, no. 4. Elsevier, pp. 609–658, Apr. 05, 2002, doi: 10.1016/S0584-8547(01)00406-2.

H. L. Chen, H. M. Lee, S. H. Chen, Y. Chao, and M. B. Chang, “Review of plasma catalysis on hydrocarbon reforming for hydrogen production-Interaction, integration, and prospects,†Applied Catalysis B: Environmental, vol. 85, no. 1–2. Elsevier, pp. 1–9, Dec. 17, 2008, doi: 10.1016/j.apcatb.2008.06.021.

Y. Jiang, T. Fu, J. Lü, and Z. Li, “A zirconium modified Co/SiO2 Fischer-Tropsch catalyst prepared by dielectric-barrier discharge plasma,†J. Energy Chem., vol. 22, no. 3, pp. 506–511, May 2013, doi: 10.1016/S2095-4956(13)60066-2.

T. Paulmier and L. Fulcheri, “Use of non-thermal plasma for hydrocarbon reforming,†Chem. Eng. J., vol. 106, no. 1, pp. 59–71, Jan. 2005, doi: 10.1016/j.cej.2004.09.005.

G. P. VAN DER LAAN and A. A. C. M. BEENACKERS, “Kinetics and Selectivity of the Fischer–Tropsch Synthesis: A Literature Review,†Catal. Rev., vol. 41, no. 3–4, pp. 255–318, Jan. 1999, doi: 10.1081/CR-100101170.

W. S. S. Al-Harrasi, K. Zhang, and G. Akay, “Process intensification in gas-to-liquid reactions: plasma promoted Fischer-Tropsch synthesis for hydrocarbons at low temperatures and ambient pressure,†Green Process. Synth., vol. 2, no. 5, pp. 479–490, 2013, doi: doi:10.1515/gps-2013-0067.

J. Xu, Y. Yang, and Y. W. Li, “Fischer-Tropsch synthesis process development: Steps from fundamentals to industrial practices,†Current Opinion in Chemical Engineering, vol. 2, no. 3. Elsevier Ltd, pp. 354–362, Aug. 01, 2013, doi: 10.1016/j.coche.2013.05.002.

D. Glasser, D. Hildebrandt, X. Liu, X. Lu, and C. M. Masuku, “Recent advances in understanding the Fischer-Tropsch synthesis (FTS) reaction,†Current Opinion in Chemical Engineering, vol. 1, no. 3. Elsevier Ltd, pp. 296–302, Aug. 01, 2012, doi: 10.1016/j.coche.2012.02.001.

N. Moazami, M. L. Wyszynski, K. Rahbar, A. Tsolakis, and H. Mahmoudi, “A comprehensive study of kinetics mechanism of Fischer-Tropsch synthesis over cobalt-based catalyst,†Chem. Eng. Sci., vol. 171, pp. 32–60, Nov. 2017, doi: 10.1016/j.ces.2017.05.022.

A. C. Ghogia, A. Nzihou, P. Serp, K. Soulantica, and D. Pham Minh, “Cobalt catalysts on carbon-based materials for Fischer-Tropsch synthesis: a review,†Applied Catalysis A: General, vol. 609. Elsevier B.V., p. 117906, Jan. 05, 2021, doi: 10.1016/j.apcata.2020.117906.

C. J. Liu, G. P. Vissokov, and B. W. L. Jang, “Catalyst preparation using plasma technologies,†in Catalysis Today, Mar. 2002, vol. 72, no. 3–4, pp. 173–184, doi: 10.1016/S0920-5861(01)00491-6.

K. S. W. Singh., “Characterization of Solid Catalysts: Sections 3.1.1 – 3.1.3,†Handbook of Heterogeneous Catalysis. pp. 427–582, Jul. 10, 1997, doi:

Z. Teimouri, N. Abatzoglou, A. K. Dalai, and H. Amin, “catalysts Kinetics and Selectivity Study of Fischer-Tropsch Synthesis to C 5+ Hydrocarbons: A Review,†2021, doi: 10.3390/catal11030330.

A. Y. Khodakov, W. Chu, and P. Fongarland, “Advances in the Development of Novel Cobalt Fischer−Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels,†Chem. Rev., vol. 107, no. 5, pp. 1692–1744, May 2007, doi: 10.1021/cr050972v.

Q. Zhang, W. Deng, and Y. Wang, “Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis,†Journal of Energy Chemistry, vol. 22, no. 1. Elsevier B.V., pp. 27–38, Jan. 01, 2013, doi: 10.1016/S2095-4956(13)60003-0.

A. H. Lillebø, A. Holmen, B. C. Enger, and E. A. Blekkan, “Fischer–Tropsch conversion of biomass-derived synthesis gas to liquid fuels,†WIREs Energy Environ., vol. 2, no. 5, pp. 507–524, Sep. 2013, doi:

J. J. Spivey and K. M. Dooley, Eds., “Promotion Effects in Co-based Fischer–Tropsch Catalysis,†in Catalysis: Volume 19, vol. 19, The Royal Society of Chemistry, 2006, pp. 1–40.

Z. Gholami, Z. Tišler, and V. Rubáš, “Recent advances in Fischer-Tropsch synthesis using cobalt-based catalysts: a review on supports, promoters, and reactors,†Catal. Rev., pp. 1–84, May 2020, doi: 10.1080/01614940.2020.1762367.

J. S. Girardon, A. S. Lermontov, L. Gengembre, P. A. Chernavskii, A. Griboval-Constant, and A. Y. Khodakov, “Effect of cobalt precursor and pretreatment conditions on the structure and catalytic performance of cobalt silica-supported Fischer-Tropsch catalysts,†J. Catal., vol. 230, no. 2, pp. 339–352, Mar. 2005, doi: 10.1016/j.jcat.2004.12.014.

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: A review,†Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 61, no. 1. Elsevier, pp. 2–30, Jan. 01, 2006, doi: 10.1016/j.sab.2005.10.003.

A. Hafeez et al., “Intensification of ozone generation and degradation of azo dye in non-thermal hybrid corona-DBD plasma micro-reactor,†Chem. Eng. Process. - Process Intensif., vol. 159, p. 108205, Feb. 2021, doi: 10.1016/j.cep.2020.108205.

M. El-Shafie, S. Kambara, and Y. Hayakawa, “Alumina particle size effect on H2 production from ammonia decomposition by DBD plasma,†Energy Reports, vol. 6, pp. 25–30, Dec. 2020, doi: 10.1016/j.egyr.2020.10.032.

K. Zhang, T. Mukhriza, X. Liu, P. P. Greco, and E. Chiremba, “A study on CO2 and CH4 conversion to synthesis gas and higher hydrocarbons by the combination of catalysts and dielectric-barrier discharges,†Appl. Catal. A Gen., vol. 502, pp. 138–149, Jun. 2015, doi: 10.1016/j.apcata.2015.06.002.

N. Jiang, Y. Zhao, K. Shang, N. Lu, J. Li, and Y. Wu, “Degradation of toluene by pulse-modulated multistage DBD plasma: Key parameters optimization through response surface methodology (RSM) and degradation pathway analysis,†J. Hazard. Mater., vol. 393, p. 122365, Jul. 2020, doi: 10.1016/j.jhazmat.2020.122365.

T. Mukhriza, K. Zhang, and A. N. Phan, “Microwave Assisted Co/SiO2 preparation for Fischer-Tropsch Synthesis,†Natural, vol. 20, no. 2, pp. 42–48, 2020, doi:

R. M. de Deugd, F. Kapteijn, and J. A. Moulijn, “Trends in Fischer–Tropsch Reactor Technology—Opportunities for Structured Reactors,†Top. Catal., vol. 26, no. 1, pp. 29–39, 2003, doi: 10.1023/B:TOCA.0000012985.60691.67.

X. Tu and J. C. Whitehead, “Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature,†Appl. Catal. B Environ., vol. 125, pp. 439–448, Aug. 2012, doi: 10.1016/j.apcatb.2012.06.006.

T. Blackbeard, V. Demidyuk, S. L. Hill, and J. C. Whitehead, “The Effect of Temperature on the Plasma-Catalytic Destruction of Propane and Propene: A Comparison with Thermal Catalysis,†Plasma Chem. Plasma Process., vol. 29, no. 6, p. 411, 2009, doi: 10.1007/s11090-009-9189-8.



  • There are currently no refbacks.

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.



RJI Main logo

Bekerjasama dengan Native Proofreading