Pengaruh Katalis Fe2O3 Pada Tabung Penyimpanan Hidrogen Berbasis MgH2 Melalui Teknik Mechanical Alloying

Andia Fatmaliana, Maulinda Maulinda, Nirmala Sari


Hydrogen is an alternative energy that has a very abundant amount in nature, three-fourths of all elements in nature are hydrogen. Abundance can be developed because it can be converted into electrical energy and is expected to be able to replace fossil materials that are increasingly depleting in the future. For the management of hydrogen, a very safe storage is needed. One of the efforts by inserting hydrogen in certain metals. Magnesium is one material that is able to absorb hydrogen. But it has a disadvantage, namely the absorption and release time is very slow, this is due to the strong bond between hydrogen and magnesium. Several attempts have been intensively studied to improve the properties of Magnesium including the use of materials in the form of nanocrystals with Mechanical alloying techniques and efforts to add certain catalysts are now being actively studied. Research on the addition of Hematite (Fe2O3) catalysts to hydrogen storage materials has been carried out through Mechanical alloying techniques based on MgH2-Fe2O3. Hematite purely derived from nature has been successfully extracted chemically (precipitation method). The milled MgH2-Fe2O3 alloy samples were then analyzed by XRD and showed that the MgH2-Fe2O3 material was successfully reduced to the nanocrystal scale. The addition of catalysts and extended milling time also showed a decrease in desorption temperature.


hydrogen, magnesium, mechanical alloying, Fe2O3,nanocristal

Full Text:



Ali. Jauhari, “Pengembangan adsorben hydrogen storage untuk aplikasi fuell cell dalam bentuk padatan partikel nano karbon aktif dengan bahan pengikat likuida lignoselulosa,” Tesis, Universitas Indonesia. Jakarta, 2012.

Jalil. Zulkarnain, “Material penyimpan hidrogen sistem MgH2-SiC yang dipreparasi melalui rute reactive mechanical alloying,” Disertasi. Universitas Indonesia Jakarta, 2011.

Muliawati. Neni, “Hidrogen sebagai sel bahan bakar : sumber energi masa depan,” Makalah energi terbarukan. Fakultas Teknik Lampung, 2008.

Insani. Andon, “Paduan Mg3CoNi2 sebagai penyerap hidrogen,” Disertasi. Universitas Indonesia Jakarta, 2009.

Schlapbach and Zuettel, “Hydrogen storage materials for mobile applications,” Nature, Vol 414, 15 November, 2001.

Ogden. Joan M, “Developing an infrastructure for hydrogen vehicles: a southern california case study,” International Journal of Hydrogen Energy , Vol. 24, pp. 709-730, 1999.

Züttel, “Materials for hydrogen storage,” Materials pp. 24-33, 2003.

C. M. Graca Araujo, “Hydrogen storage materials”, Catalysis, 2008.

Zaluska, A, Zaluski, L, and Stroem-Olsen, “Nanocrystalline magnesium for hydrogen storage,” J. Alloys. Compd, vol. 288, pp. 217-225, 2008.

Rahwanto,“Adisi Fe2O3 dan SiC pada MgH2 untuk aplikasi penyimpanan hidrogen kendaraan fuel cell,” Indonesia Journal of Applied Physisc. ISSN: 2085-0133, 2012.

Cristian, “Modern Analytical Chemistry”, Newyork, McGrawhill Com, 2012.

Purwasasmita BS and Gultom RS, “Sintesis dan karakterisasi serbuk hidroksiapatit skala sub- mikron menggunakan metode presipitasi,” Journal of Life and Physical Sciences., vol 10, pp. 155-167, 2008.

Nisa. K, “Isolasi dan karakterisasi nano kalsium dari cangkang kijing lokal (Pilsbryoconcha Exilis) dengan metode presipitasi,” Skripsi. Institut Pertanian Bogor, 2011.

Shen, L., Qiao, Y., Guo, Y., and Tan, J., “Prepation and formation mechanism of nano-iron oxide black pigment from blast furnace flue dust, school of chemistry and chemical,” Tianjin University, vol. 39, pp. 737 – 747, 2011.

Suryanarayana. C, “Mechanical alloying and milling,” Progress in materials science vol. 46 pp. 1-184, 2001.



  • There are currently no refbacks.

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.



RJI Main logo

Bekerjasama dengan Native Proofreading